$C^{*}$-semi-inner product spaces

Authors

  • Asadollah Niknam Department of Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad Iran.
  • Mohammad Janfada Department of Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad Iran.
Abstract:

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Frames in 2-inner Product Spaces

In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.

full text

Atomic Systems in 2-inner Product Spaces

In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.

full text

Numerical Range of Two Operators in Semi-Inner Product Spaces

and Applied Analysis 3 was studied by Verma 14 . He defined the numerical range VL T of a nonlinear operator T , as VL T : { Tx, x [ Tx − Ty, x − y ‖x‖ ∥x − y∥2 : x, y ∈ D T , x / y } . 1.3 He used this concept to solve the operator equation Tx−λx y, where T is a nonlinear operator. This paper is concerned with the numerical range in a Banach space. Nanda 15 studied the numerical range for two ...

full text

A Comparative Study of Fuzzy Inner Product Spaces

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

full text

Inner Product Spaces and Orthogonality

1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...

full text

Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces

The semi-inner product, in the sense of Lumer, on weighted Hardy space which generate the norm is unique. Also we will discuss some properties of the numerical range of bounded linear operators on weighted Hardy spaces.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  73- 83

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023